Dna And Bone Cells Found In Dinosaur Bone

DNA and bone cells found in dinosaur bone

by Dr Jonathan D Sarfati

123rf.com/Eakkachai Ngamwuttiwong

Published: 11 December 2012 (GMT+10)

For the last 15 years, Dr Mary Schweitzer has been rocking the evolutionary/uniformitarian world with discoveries of soft tissue in dinosaur bones.1 These discoveries have included blood cells, blood vessels, and proteins like collagen. But under measured rates of decomposition, they could not have lasted for the presumed 65 million years (Ma) since dino extinction, even if they had been kept at freezing point (never mind the much warmer climate proposed for the dinosaurs).2 As she said in a popular TV show:

When you think about it, the laws of chemistry and biology and everything else that we know say that it should be gone, it should be degraded completely.3

… as well as the following in a scientific paper:

The presence of original molecular components is not predicted for fossils older than a million years, and the discovery of collagen in this well-preserved dinosaur supports the use of actualistic conditions to formulate molecular degradation rates and models, rather than relying on theoretical or experimental extrapolations derived from conditions that do not occur in nature.4

As a careful scientist, after Dr Schweitzer found elastic blood vessels and other soft tissue, she rechecked her data thoroughly. A report quoted her as follows:

“It was totally shocking,” Schweitzer says. “I didn’t believe it until we’d done it 17 times.”5

Other evolutionists saw the baneful implications to their long-age dogma, and claimed that the blood vessels were really bacterial biofilms, and the blood cells were iron-rich spheres called framboids.6 Yet this ignores the wide range of evidence Schweitzer adduced, and she has answered this claim in detail.7,8 However, Schweitzer herself maintains her faith in the long-age paradigm.9

Dino bone cells and proteins

Schweitzer’s more recent research makes long ages even harder to believe. Here, she analyzed bone from two dinosaurs, the famous Tyrannosaurus rex (MOR 112510) and a large duck-billed dinosaur called Brachylophosaurus canadensis (MOR 2598).11 Bone is an amazing structure with the ability to re-work in response to stress,12 and uses the finely designed protein osteocalcin,13 which has been found in the best known duck-billed dinosaur, Iguanadon, ‘dated’ to 120 Ma.14 The most plentiful cells in bones are osteocytes. These have a distinctive branching structure that connects to other osteocytes, and have a “vital role” in “immediate responses to changing stresses.”10

James D. San Antonio, Mary H. Schweitzer, Shane T. Jensen, Raghu Kalluri, Michael Buckley, Joseph P. R. O. Orgel

Schweitzer’s team again removed the hard bony mineral with the chelating agent EDTA. They found “transparent cell-like microstructures with dentritic [branching, just the shape expected for osteocytes] processes, some containing internal contents,” from both dinos.

They also used antibodies to detect the globular proteins actin and tubulin, used to make filaments and tubes in vertebrates. The proteins from both dinos had similar binding patterns to the same proteins from ostrich and alligator. They are not found in bacteria, so this rules out contamination. In particular, these antibodies did not bind to the type of bacteria that forms biofilms, “thus a biofilm origin for these structures is not supported.”10 Furthermore, they tested for collagen, a fibrous animal protein, and it was found in these bones—but not in surrounding sediments.

Furthermore, because actin, tubulin, and collagen are not unique to bone, they tested for a very distinctive osteocyte protein called PHEX. This stands for Phosphate-regulating endopeptidase, X-linked, which is vital in depositing the hard bone mineral. And indeed, antibodies specific to PHEX detected this unique bone protein.15 Detecting a distinctive bone protein is very strong support for osteocyte identification.

Cells are usually completely degraded soon after the death of the organism, so how could ‘bone cells’ and the molecules that comprise them persist in Mesozoic [evolutionary dino-age] bone?—Mary Schweitzer et al.

The problem for long ages is as they ask:

Cells are usually completely degraded soon after the death of the organism, so how could ‘bone cells’ and the molecules that comprise them persist in Mesozoic [evolutionary dino-age] bone?10

They try to solve this problem by proposing that bone protects the cells from bacteria that cause degradation. Bone would hinder the cells from swelling that comes before cells self-destruct (autolysis) as well. They also propose that the surfaces of the mineral crystals attract and destroy enzymes that would otherwise speed up degradation. They propose that iron may play a vital role too, both by helping to cross-link and stabilize the proteins, as well as by acting as an anti-oxidant.

Actually, this is all reasonable from a biblical creationist perspective, up to a point. Measured decay rates of some proteins are compatible with an age of about 4,500 years (since the Flood), but not with many millions of years. However, seeing not only proteins but even cell microstructures after 4,500 years is still surprising, considering how easily bacteria can normally attack them. These ideas could help explain survival over thousands of years. But they seem totally implausible for millions of years, since the above preservation proposals could not stop ordinary breakdown by water (hydrolysis) over vast eons.16

Dino DNA

The problem for long-agers is even more acute with their discovery of DNA. Estimates of DNA stability put its upper limit of survival at 125,000 years at 0°C, 17,500 years at 10°C and 2,500 years at 20°C.2 One recent report said:

“There is a general belief that DNA is ‘rock solid’—extremely stable,” says Brandt Eichman, associate professor of biological sciences at Vanderbilt, who directed the project. “Actually DNA is highly reactive.”

On a good day about one million bases in the DNA in a human cell are damaged. These lesions are caused by a combination of normal chemical activity within the cell and exposure to radiation and toxins coming from environmental sources including cigarette smoke, grilled foods and industrial wastes.17

A recent paper on DNA shows that it might be able to last as much as 400 times longer in bone.18 But even there, there is no way that DNA could last the evolutionary time since dino extinction. Their figures of the time till complete disintegration of DNA (“no intact bonds”) is 22,000 years at 25°C, 131,000 years at 15°C, 882,000 years at 5°C; and even if it could somehow be kept continually below freezing point at –5°C, it could survive only 6.83 Ma—only about a tenth of the assumed evolutionary age. The researchers state:

However, even under the best preservation conditions at –5°C, our model predicts that no intact bonds (average length = 1 bp [base pair]) will remain in the DNA ‘strand’ after 6.8 Myr.—M.E. Allentoft et al.

However, even under the best preservation conditions at –5°C, our model predicts that no intact bonds (average length = 1 bp [base pair]) will remain in the DNA ‘strand’ after 6.8 Myr. This displays the extreme improbability of being able to amplify a 174 bp DNA fragment from an 80–85 Myr old Cretaceous bone.18

Yet Schweitzer’s team detected DNA in three independent ways. Indeed, one of these chemical tests and specific antibodies specifically detect DNA in its double–stranded form. This shows that it was quite well preserved, since short strands of DNA less than about 10 bp don’t form stable duplexes. The stain DAPI19 lodges in a groove of a stable double helix, which requires even more bp.

Again, the first possible response by long-agers is “contamination”. But the DNA was not found everywhere, but only in certain internal regions of the ‘cells’. This pattern was just like in ostrich cells, but nothing like biofilm taken from other sources and exposed to the same DNA-detecting pattern. This is enough to rule out bacteria, because in more complex cells (such as ours and dinos), the DNA is stored in a small part of the cell—the nucleus.

Futhermore, Schweitzer’s team detected a special protein called histone H4. Not only is yet another protein a big problem for millions of years, but this is a specific protein for DNA. (DNA is Deoxy-riboNucleic Acid, so is negatively charged, while histones are alkaline so positively charged, so they attract DNA). In more complex organisms, the histones are tiny spools around which the DNA is wrapped.20 But histones are not found in bacteria. So, as Schweitzer et al. say, “These data support the presence of non-microbial DNA in these dinosaur cells.”10


It’s hard to improve on one of Mary Schweitzer’s early quotes:

It was exactly like looking at a slice of modern bone. But of course, I couldn’t believe it. I said to the lab technician: “The bones are, after all, 65 million years old. How could blood cells survive that long?”21

But this just shows the grip of the long-age paradigm. A more reasonable and indeed scientific question would be:

This looks like modern bone; I have seen blood cells [and blood vessels] and detected hemoglobin [and now actin, tubulin, collagen, histones, and DNA], and real chemistry shows they can’t survive for 65 million years. What I don’t see is the claimed millions of years. So we should abandon this doctrine.

churinga churinga
70+, M
Dec 13, 2012